If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+4-24=0
We add all the numbers together, and all the variables
4n^2-20=0
a = 4; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·4·(-20)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*4}=\frac{0-8\sqrt{5}}{8} =-\frac{8\sqrt{5}}{8} =-\sqrt{5} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*4}=\frac{0+8\sqrt{5}}{8} =\frac{8\sqrt{5}}{8} =\sqrt{5} $
| 2x-9x+45=3x+35 | | 4t-8=8t | | 4-15=z÷(-9) | | 5(5c-1)-18=23c+5 | | 0.2x+x=17 | | (3x-5)^2+7(3x-5)+12=0 | | 6y-6y=13+6 | | 〖-x〗^2+1=0 | | 90=2t-17t | | 14y-8=19y+37 | | 9t+4/6t-5=3t+6/2t-5 | | (X+5)^2/3+4(x+5)^1/3+3=0 | | X+5^2/3+4(x+5)^1/3+3=0 | | 5/7x2-x=2/7 | | X+6/2-16-3x/4=9 | | 8-+12e=-20 | | 2-7y=7-8y | | 2x2−17=81. | | 2x²−17=81. | | 5x-30=5(x-6) | | 3(x+5)=2(3x+22 | | 0=x^2-40x-144000 | | 1x=3x-70 | | 4x^2=8x-14 | | (20x)^3-30x=0 | | A=(3x)x(25x) | | 〖20x〗^3-30x=0 | | (6x/x-6)-(4/x)=(24/x^2-6x) | | 3x+7=90/4 | | 2/3x+1/3=-4/3x-2/3 | | 4^(x+1)=1/32 | | 2(-x-8)=5(x-3) |